【摘要】文章采用机器学习中的长短期记忆模型(LSTM)预测汉江水系部分子流域的径流量,用纳什效率系数来评价预测精度。计算结果表明,LSTM的超级参数对径流量预测效果的影响显著,恰当的超级参数可使纳什效率系数达到0.93以上。在常用的超级参数当中,回溯次数、输入数据的随机舍弃率、数据遍历次数对预测精度的影响较大。这些超级参数在多个子流域的径流预测中有一定的通用性。作为防止过拟合现象的超级参数,输入数据随机舍弃率在径流量预测中宜设置低值,以免漏报洪水,这与通常机器学习中的设置有所不同。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-30
《中外医疗》 2015-07-06
《中外医疗》 2015-07-06
《广州大学学报(社会科学版)》 2015-07-01
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点